Chamber Matching at Sputter Clean Chambers with Inductively Coupled Plasma

N. Urbansky(1) S. Franke(1), T. Beger(1), M. Watzke(1), M. Klick(2), R. Rothe(2)
(1) Infineon Technologies Dresden, Germany
(2) Plasmetrex GmbH Berlin, Germany
Content

- Sputter etch process – pre clean before sputter deposition
- Inductively coupled plasma
- Chamber matching and RF power losses
- Detection of chamber matching problems using plasma metrology
Sputter etch process – pre clean before sputter deposition

- Air (oxygen) in contact holes leads to increased contact resistance.
- Sputter etch process for cleaning and oxide removing.
- Small etch rate and small ion energy (radiation damages in silicon crystal for higher ion energy).
- Low process pressure is recommended (redeposition, reoxidation is possible by higher process pressure).
- The plasma process is near at the pressure limit.

Inductive coupled plasma:
- High ion density and small ion energy.
- Separate ion energy control by bias power.
Salicide process

- Surface cleanliness before deposition is extremely important
- The native oxide can be removed with a wet dip but this limits the queue time between the dip and metal deposition
- An in-situ sputter clean provides more flexibility in terms of the queue time.
- The amount of sputter clean required is between 25-50Å of oxide

Too short:
- insufficient pre clean -> CoSi-Spiking

Too long:
- re-sputtered Si on spacer wall
- CoSi growth where not wanted
- Si can be removed in next step but not CoSi

- Ar-Plasma
Situation in 2009

- Process control
 - Daily check on thermal oxide
 - Oxide etch removal 5nm

- Impact on products
 - Different etch rates cause yield loss and parameter shift based on product design
 - Etch chambers had to be blocked for certain products

![Graph showing oxide etch removal and BLBL leakage](image)

BLBL leakage depends on sputter depth
Cold Soft Etch chamber

Preclean chamber with two different RF couplings:

- Inductive coupling (ICP, inductively coupled plasma) for plasma generation
- Capacitive coupling for BIAS control (etch)

![RF-system of CSE-chamber diagram]
Inductive coupled plasma – 2 main problems

1. Plasma mode: E and H mode
 - Every ICP plasma ignites in E mode!
 - If the ICP power is high enough to yield a high electron plasma density, the plasma switches to H mode.
 - If RF losses are too high, the plasma remains in E mode.

2. Phase angle
 - Two generators with the same frequency (13.56 MHz).
 - Capacitively coupling from ‘hot’ end of coil and electrode (Chuck).
 - Phase angle difference affects sheath potentials and ion energy at wafer.
 - The ion energy affects etch (sputter) rate and crystal damages.
1. Ignition, E and H mode

- RF Switch on:
 - High $U_0 \rightarrow$ Ignition in E-mode

- Low RF power:
 - High $R_{\text{bulk}} \rightarrow$ Low i_{coil_s}
 - High $U_0 \rightarrow$ Plasma in E-mode

- High RF power:
 - Low $R_{\text{bulk}} \rightarrow$ High i_{coil_s}
 - Low $U_0 \rightarrow$ Plasma in H-mode

E-mode \rightarrow capacitively coupled H-mode \rightarrow inductively coupled
Chamber matching and RF power losses

- Main reason for undefined plasma mode: RF power losses
- In case of high ICP-power losses the plasma remains in the E-mode.
- RF power losses depended on:
 - Aging of RF parts
 - Contacts
 - Eddy currents
 - Ceramic
 - Second source parts
 - Chamber improvement
 - Matchbox (new / old)
The effect of ICP mode at the chamber check

- Process control by etch rate of test wafers

- Sputter etch process:
 Etch rate depends on ion energy and ion current.
 \[E_H \cdot j_{+H} = E_E \cdot j_{+E} \]

 - \(E_H \) – ion energy for H - mode
 - \(E_E \) – ion energy for E - mode
 - \(j_{+H} \) – ion current for H - mode
 - \(j_{+E} \) – ion current for E - mode

- E – mode: small ion density, but high ion energy, \(\rightarrow \) high radiation crystal damages!

- H – mode: high ion density, but small ion energy

- Etch rate can be similar, chamber seems to be in spec!
2. phase angle

- Capacitive coupling through dielectric window (about 2/3 of power inductively about 1/3 of power capacitively)

- Phase angle between upper and lower capacitive coupling affects sheath potentials and ion energy!

→ Generator synchronization
Synchronisation RF-coupling

- Stable and comparable parameters seen with RF-configuration at 180°
- Electron and ion densities depend on phase angle.
- Ion current depends on phase angle.

Interaction of 2 electric fields with the same frequency
- Sheath voltage depends on phase angle.
- Ion energy depends on sheath voltage.

Adjustable movement dependent from:
- coax cable length
- Adjustment Sync Switch Box

Sync Switch Box - Matrix
- Adjustment per 1/32λ
- 1 Period

Summary

- Optimized RF-Setup

 - Cable length coaxial cable \(1\lambda = 14.58\text{m}\)
 - Synchronously RF-coupling \(168.75^\circ\)
 - Matching control adjustments
 - ICP: Load 47\(\Omega\), Tune 47\(\Omega\)
 - BIAS: Load 220\(\Omega\), Tune 100\(\Omega\)
 - Auto matching ON

- Only certain RF-power input enables stable plasma in H-mode.
- Well-defined phase angle at chamber provides well defined plasma parameters and etch rate.
Results

- all Low-Power CSE-chambers are comparable
- no more significant differences in etch rate

- comparable HERCULES®-data of all our chambers, also comparable for APC-analysis
- defined RF-Setup, no subjective adjustments