Supervision of Plasma-Etch-Processes at different Tool Types

Volker Tegeder

Infineon Technologies SC300
Supervision of Plasma Etch Processes at different Tool Types

- European Project: APC300
- Sensor Integration
 - different chamber types
 - B-field variations
- Linking logistical Data
 - spy for logistical data
 - innovative tool/sensor interface
- Application Examples of SEERS in Production
 - automatic Fault Detection
 - tool start-up / Tool release
 - chamber conditioning
 - influence of preprocesses
European Project: APC300
Supervision of Plasma Etch Process by SEERS

Assessment Site of Hercules/APC System
Infineon Technologies SC300 (Dresden)

Participants
AMD Saxony
ASI (Berlin)
Infineon Technologies (Regensburg)
ST Microelectronics (Rousset, France)

Start: 1st February 2000
Duration: 18 Month

European SEA IST-Project: APC300
Control System Set Up

Evaluation Site: Infineon Technologies SC300

- Dr. Volker Tegeder
- AEC/APC-Symposium XII 24.-28.9.00

Plasma Process Control

- HERCULES/APC (Plasma-Parameter)
- APC NET (Tool-Parameter)
- Data base
- Test-Data
- Correlation between yield and plasma
- CoO, OEE

Evaluation site

- focus on
 - process control
 - economical benefit
- 100% supervision on monitored etch processes
- up to 12 chambers
- approx. full POR
- link to logistical data
- different processes
 - poly / metal / oxide
- different chamber types
 - capacitive / ICP

Participants

- different applications at single tools
- mutual exchange of results
Sensor Integration
SEERS Measurement Principle

Measurement of plasma-electron-density and collision rate

- **Top Power**
- **Chamber**
- **Bottom Power**
- **Passive Sensor Head**
- **RF current**
- **HERCULES**
 - Fast ADC
 - 500 MHz
 - 1GS/s
 - 50 Ω input
- **Chamber**
- **Peak voltage**

Electron density n and **Collision Rate** v:

- **SEERS Measurement Principle**
- **HERCULES**
- **Fast ADC**
- **500 MHz**
- **1GS/s**
- **50 Ω input**

Graphs:
- **Etch Time [s]**
- **Collision Rate [$10^6 s^{-1}$]**
- **Time**

Institute
- **Infineon Technologies**
- **SC300**

Authors
- **Dr. Volker Tegeder**

Conference
- **AEC/APC-Symposium XII 24.-28.9.00**
Adaptation to different chamber types

DPS
- peak voltage
- inductively coupled
- capacitive ≠ inductive coupled freqency

LAM 300
- peak voltage
- inductively coupled
- special software interface

eMxP+
- peak voltage
- rotating B-field
- optical access for OES
Synchronization to rotating B-Field

B-field impacts plasma => varying SEERS signal => synchronization necessary

B-field and trigger signal

eMXP300: B-field Signal

Varying magnetic field

B-field sensor at chamber wall
Linking Sensor Data to logistical Data
Linking Sensor Data to logistical Data

Logistical data the missing link?!?

Product #, lot #, recipe...important for any sensor:

Data Analysis
 correlation to in-line/electrical data
 economical benefit

Fault detection
 depending on product
 depending on recipe

Link I : Spy for logistical Data

Link II : Innovative tool sensor interface
SPY for logistical Data

Linking sensor data to logistical data

ABAKUS SECSII SPY
- full passive system
- configurable message filter
- communication to sensor via SECSII
- ethernet based
 (patent pending)
Innovative Tool / Sensor Interface

Example: SEERS

LAM Plug and Play Interface

- universal sensor data interface
- independent network ethernet based 10 Mbit
- access to logistical data
- merging tool and sensor data => the virtual tool
Application Examples of SEERS in Production
Automatic Fault Detection

Different fault detection methods possible. First: average value of ν, n

SEERS sensitive to
- pressure
- magnetic field
- RF- power
- chemistry
- chamber condition
- pre-processes
- etched substrate
- arcing

Average curve from 80 individual M1 runs.

SEERS Fingerprint
Automatic Fault Detection

Arcing Traces in Chamber ⇒ Exchange of E-Chuck and Ion Shield

Fault detected by lot-average of ν
Tool start up / Tool release

Checking Chamber Condition with SEERS

Define
Determine
Perform Tests for

- reference recipe
- process fingerprint
- HW change
- tool hook up
Tool start up / Tool release

Recipe
Step 1
25mtoorr / 215W / 30G /
50 sccm O2

Step 2
25mtoorr / 215W
0 G / 50sccm O2
Chamber Conditioning
(after idle chamber)

Normalized warm up curve

First wafer effect
- same chamber
- approx. 1h idle
- different gasses
- $P_{G/D}$ proportion 1:2
- $t_{G/D}$ proportion 1:2.2
- $p_{G/D}$ proportion 1:2.5

similar warm up curve with strongly different recipes
=> thermic effect expected

Comparison with different recipes
Chamber Conditioning
(after wet clean)

Lesson learned: minimal collision rate correlates with particle count

Usual procedure with resist and poly wafers

Conditioning procedure I
- resist wafers
- poly wafers
- particle test
- etch-rate test

acceptable particle level after > 50 wafers
=> long and costly procedure
Chamber Conditioning (after wet clean)

Collision Rate rises as poly is etched
- still not perfect conditioning

Improved conditioning with patterned oxide wafers

Conditioning procedure II
- oxide wafer for low collision rate
- patterned wafers
- constant collision rate
- particle test
Chamber Conditioning
(after wet clean)

Conditioning procedure III
- resist wafers
- oxide wafers (unpatterned)
- particle test

Collision rate evolution after the third wet clean

Only 10 wafers for conditioning compared to prior 50!

Optimized procedure with resist and oxide wafers

Dr. Volker Tegeder
AEC/APC-Symposium XII 24.-28.9.00
Influence of Pre-Processes

Process mix at one chamber

Collision rate with different pre-processes

GC MO Process
- stable level for ν at $10^6 s^{-1}$
- P3 pre-process highest impact
Influence of Pre-Processes

P3: strongly polymerizing process
P1: strongly etching of polymers

Process mix impact on product

- Multi-Process-Chamber
- Preprocess indicated
- P3 has highest impact
- P1 compensates P3 impact
Influence of Pre-Processes

Data Mining: Decision Tree
- based on statistics
- suitable for high data volume
- detects correlation

Target for decision tree: Plasma Collision Rate ν

\Rightarrow Correlation: Collision Rate / GC BIAS for special Lots with high collision rate

Decision Tree for Electrical Data
Influence of Pre-Processes

Strong correlation between collision rate and GC bias ($R^2 > 0.92$) for indicated lots with high collision rate

Plot of collision rate and GC bias
Co-Authors

Matthias Scholze
Torsten Prescher
Uta Federbusch
Thomas Bauer
Eckhard Marx

Ute Nehring

Daniel Zschäbitz
Mark Laqua

Mathias Hofmann
Sven Mueller

Robert Ronchi
Michel Derie

Infineon Technologies SC300

Infineon Technologies Dresden
University of Dresden
University of Dresden

AMD Saxony
AMD Saxony

ST Microelectronics Rousset, France
ST Microelectronics Rousset, France

Acknowledgement:
The presented work is funded by the European IST program 4-8-3 on the SEA-Initiative