Quality Management by Advanced Process Control in Large Area PECVD

Michael Klick, Lutz Eichhorn, Ralf Rothe

Plasmetrex GmbH
Schwarzschildstr. 3
D – 12489 Berlin
Germany

10th European Advanced Equipment Control/
Advanced Process Control (AEC/APC) Conference
Hotel Sheraton Catania, Sicily - Italy, April 28-30, 2010
Quality issues in industrial Plasma Processing

- Industrial deposition of functional, e.g., optical, layers requires often large-area layers with sufficient uniformity.

- Micro structuring for light trapping gets more important, e.g., in photovoltaics now for up to 6 m².

- Plasma Enhanced Chemical Vapor Deposition or Plasma Etching uses mostly parallel-plate RF discharges for large and flat substrates.

 - Plasma driven uniformity issues
 - Gas temperature drift affects process
Overview

- **Complexity of Plasma Processing**
 - Electro-dynamic model of planar, large-area RF discharges
 - RF current density distribution
 - Bulk power density distribution and layer uniformity
 - Parameter variations

- **Model-based Plasma Parameter Measurement**
 - Electrical measurement of plasma parameters
 - Indirect gas temperature measurement through collision rate

- **Stability, Uniformity and Temperature as Quality Indicators**
 - Idle time – chamber temperature
 - Substrate temperature
 - Layer uniformity, plasma parameters and gas temperature
The Complexity of Plasma Processing

Dimensions (reactor), gas flow rates, pumping speed...

Chamber state

Layers on chamber wall, tool aging, arcing, particle

Wall temperature

Gas flow rates and pumping speed

RF power

Deposition rate

Uniformity

Electrical potential of surface

Temperature of surface

Structure of surface

Tool and recipe

Plasma parameters

Substrate properties
RF Current → Bulk Power → Layer Thickness

- The ion energy distribution is determined by the sheath voltage.
- Ion energy distribution seems to affect primarily the layer structure.
- RF current density determines bulk power density.

- RF bulk power provides power to plasma electrons.
 - Electrons are heated by thermalization of electric field energy.
 - More, hot electrons crack the process gas.
 - Higher crack rate provides more reactive particles
 → Higher local deposition rate
Motivation: Real a-Si Thickness on Gen 8.5 Panel

- Measured thickness distribution (left), simulated power distribution (right)

- a-Si layer thickness
 Ariel Ben-Porath, Benny Shoham,
 BrightView systems, Increasing cell efficiency and optimizing productivity using wide area metrology, Photovoltaics World, March/April 2010

- RF power distribution
 Simulation – Plasmetrex GmbH
Electro-dynamic model for RF Bulk Power Uniformity from low to high Plasma Density

The electron collision rate is constant.

\[\nu = 5.0 \times 10^8 \text{ s}^{-1} \]

At high plasma density the skin effect increases and the standing waves are not decreases.
Interpretation of Standing Wave Effect

- Analog to wave propagation in open cables
 - Geometric 'compression' through smaller area.
 - Reflection in center of discharge, reflected wave dissipated additional power.

- The skin effect in plasma is like the skin effect in metal. The skin depth depends on the electron density and is higher compared to metal.
Smaller Chamber Gen 5 is more uniform compared to Gen 8.5

The peak voltage, electron temperature, and electron density are kept constant.

Please note the different plot ranges in all directions.

plasma density \(n = 5.0 \times 10^8 \text{ cm}^{-3} \)

collision rate \(\nu = 5.0 \times 10^8 \text{ s}^{-1} \)

\(n = 5.0 \times 10^8 \text{ cm}^{-3} \)
Are the model input parameters as electron collision rate and density suitable for quality management?
The crucial plasma process parameter is the density of neutrals n_n:

$$n_n = \frac{p}{k \theta_n}$$

- **p**: Pressure
- **θ_n**: Gas (neutrals) temperature

Power dissipation for chemistry by electrons (collision rate)

Energy and angle distribution of ions determines etch or deposition rate and film properties.

- **k**: Boltzmann constant

⇒ adjustable tool parameter

⇒ unknown & depends mainly on RF power!
Plasma and Surface Effects driven by Gas Heating

\[n_n = \frac{p}{k_B \vartheta_{\text{gas}}} \propto \nu \]

\[\lambda_+ = \frac{k_B \vartheta_{\text{gas}}}{p \sigma} \]

Gas Temperature \(\uparrow \) (\(p \) - const.)

Density of neutrals \(n_n \) \(\downarrow \)

Free mean path of ions \(\lambda_+ \) \(\uparrow \)

Energy \(E_+ \) \(\uparrow \)

Transposition on surface \(\uparrow \)

Compact layer

Defect, Damage

Neutrals heated by Ions \(\vartheta_{\text{gas}} \)
Applied Materials® SunFab 5.7 (AKT60, 2.2 x 2.6 m²)

Sensor Setup – Large Area PECVD

Capacitively coupled parallel plate RF plasma CVD chamber

Plasma cleaning:
\[4NF_3 \rightarrow 2N_2 + 12F \]
\[12F + 3Si \rightarrow 3SiF_4 \]

RPSC
Remote plasma source clean

RF power supply for deposition

Deposition:
\[SiN_x, SiO_x, a-Si, \text{ etc., ...} \]

Gas In

RF current
Sensor

Heated and movable susceptor

Shower head

Glass substrate

To pump
Plasma and Hardware Parameters for Process and Quality Control

- Matchbox Cables
- Electrode System
- Deposition Rate
- Seasoning Temperature
- RF current
- Frequency
- Fast Digitizer, Nonlinear Plasma Model (NEED)
- Collision rate
- ChamberState
- Process Stability
- Film Properties
- Uniformity
- Film Properties

Plasma Parameter: Idle Time causes Process Deviations

- The upper curve follows means of seasoning process.
- The lower points are means of deposition process.

- Both seasoning and deposition are affected.
- High idle time cools chamber down.
Collision rate indicator of Chemistry and Temperature

Process variations caused by varying panel temperature

After 3h idle time, the collision rate starts at a higher level and is in the initial state after about 20 deposition processes when the chamber is heated up.

Stable seasoning processing indicates thermal and chemical equilibrium.

The cleaning and seasoning process depends on the final temperature of the deposition. In particular the process chemistry can only reach a balance when chamber temperature is stable.
Estimated Substrate Temperature Variation

Gas temperature estimation
- Gas is heating by plasma ions to a temperature well above the substrate.
- Substrate temperature is about $350 \, ^\circ C = 650 \, K$ (Data from AKT)
- Estimated gas temperature $\approx 700 \, K$
- Collision rate range $\pm 7\%$

Estimated gas temperature variation $\approx \pm 50 \, K$

Substrate temperature estimation
- Heat capacity of panel: $1000 \, Ws / m^2 \rightarrow 1 \, K$
- Radiation (dominates heat transfer): $475 \, K \rightarrow 650 \, W / m^2$ (Wall 445 K)

Substrate temperature decline within 60 s $\rightarrow 30 \, K$
How Seasoning affects Si Uniformity

- The collision rate from seasoning is both a measure of chamber temperature and wall surface chemistry.
- The variation of both parameters is caused by chamber idle time:
- Shows the importance of chamber wall seasoning after clean.
Uniformity Change with Cold Panel: Lower Pressure

- Collisions rate in 1/s
 \(3 \times 10^8\) vs \(5 \times 10^8\)

- The estimated difference of uniformity between cold and warm panel confirms the measured one!
Conclusions

- A significant part of large area non-uniformity of PECVD is caused by electro-dynamic effects in the plasma. These effects influence the quality primarily.

- Gas temperature as a major reason for plasma process instability and can be indirectly measured by electron collision rate. For this reason the electron collision rate is a useful quality indicator.

- Gas temperature affect collision rate and density of electrons; this changes again the layer uniformity.

- A real quality management without plasma parameters is not sufficient.

Thank you for attention!