Chamber characterization and predictive maintenance of PECVD chamber

Michael Klick\(^1\), Percy Heger\(^2\)

\(^1\)Plasmetrex GmbH, \(^2\)Infineon AG Dresden,
Motivation

➢ Thickness variation of PECVD processes is caused by:
 • temperature drift
 • chamber conditioning
 • different losses in RF coupling system

➢ It can be often controlled by R2R within reasonable limits but:
 • layer properties can be affected
 • power not used in the plasma overheats other parts of equipment
 • indicates upcoming maintenance case → predictive maintenance

→ Feasibility study for an RF chamber characterization with simplified model of matchbox and chamber of AMAT DxDL PECVD chamber.
Overview

➢ Target and Strategy
➢ Tool abstraction layer and EEQA
➢ Tool and Process
➢ RF Equipment Model
➢ Chamber impedance for FDC and chamber comparison
➢ Long-term study and maintenance measures
➢ Results and Conclusions
Target and Strategy

➢ Targets of feasibility study for advanced process parameter concept
 • Tool abstraction layer according to ISMI's Enhanced Equipment Quality Assurance targets
 • Process stability of deposition
 • Chamber Matching → RF sub-circuit

➢ Strategy
 • Chamber characterization with RF equipment model based on tool data only
Tool Abstraction and Fingerprinting – RF component

Tool-specific

Real-time RF tool data
\[P_{\text{forward}}, C_{\text{tune}}, \ldots \]

Optional sensor data
- VI probe
- Plasma sensor

Independent of Tool

Real RF Power in plasma → Process Control

RF Power Efficiency → Fingerprint
→ FDC/Maintenance
→ Tool Aging

Reflection coefficient → Matchbox check
→ Chamber check
...
Tool and Process

➢ Nitride deposition in AMAT DxL chamber
 • \(p > 1 \text{ Torr and } P = 350 \text{ W} \)
 • Many chambers with lot splitting

➢ Conditions
 • Only tool data available at all chambers
 • At some chambers an add-on Vp-sensor is available
 • Phase IV matchbox
RF Equipment Model

- Each chamber is described as a series equivalent circuit of capacitance and resistance.
- Minimum model → More complex models with more output need more input.
RF Equipment Model - Limitations

- Limitations
 - The raw data from tool are not absolute values, must be rescaled. Automatic calibration is necessary for manufacturing control.
 - Matchbox must be assumed to be lossless.
 - → Bad 'spatial' resolution of equipment faults.
Chamber Capacitance - Comparison

Difference indicates:
Impact of maintenance procedure on RF contact loss
or
Different hardware, chuck, electrode system incl. Feed-through
or
Sheath (plasma) at wafer caused by chamber conditioning or wafer

Can be decided if empty chamber is measured separately once at all chambers under test.
Chamber Capacitance – Process optimization

Recipe preset without RF power → too far away from process value

If the capacitance of the empty chamber is measured separately, the preset and so the matching time can be improved:

→ less process time
→ higher throughput
→ higher OEE
Chamber resistance - Comparison

Higher chamber resistances means higher RF power loss.

Less RF power yields decreased deposition rate.

The lossy chamber needs a longer process time for the same layer thickness.
Power loss estimation with additional RF peak voltage measurement

Matchbox out calculated with additional RF peak voltage measurement.

About 100 W power loss estimated from load impedance and voltage measured at matchbox output.

The high RF power loss is due to the large current of about 12 A.

The mostly larger losses in the electrode system are not shown here.
Overview

➢ Target and Strategy
➢ Tool abstraction layer and EEQA
➢ Tool and Process
➢ RF Equipment Model
➢ Chamber impedance for FDC and chamber comparison
➢ Long-term study and maintenance measures
➢ Results and Conclusions
There are three identical chambers with higher capacitance → smaller sheath → different ion energy → sheath properties → deposition rate

Correct rescaling? Calibration?

But effect of clear chamber clusters is relevant.

RF losses in electrode/ESC is one of the major candidates.
Long-term study - Chamber resistance

Chamber resistance depends on:
Losses in the RF coupling system – most losses between matchbox output and wafer and via plasma impedance on process pressure, chamber conditioning and wafer.
Impact of repair on process result and chamber parameters

After repair of pressure control, thickness decreased.

Resistance R_{eff}, peak voltage (add-on sensor at matchbox) and C_{eff} changes fit to maintenance measure and layer thickness decrease after measure.

Three independent parameters allow easy fault detection and to some extent also classification.
Results and Conclusions

➢ Usage of reduced RF equipment model with a parametrization of a simple matchbox model by tool data only.

➢ Need verification and improvement by separate measurement of empty chamber.

- Provides only a limited additional information as an equivalent load impedance of a 'loss-less' matchbox.

+ The load impedance is an quantitative parameter:
 • Provides process understanding and basics for RF chamber matching.
 • Matching behavior can be improved → OEE
 • RF power loss variations due to bad (old) contacts including varying mounting procedures
 • Allows simple FDC, e.g., for predictive maintenance as a measure for RF power losses between chamber and matchbox.